
Improving PostgreSQL for

Greater Enterprise

Adoption

Tetsuo Sakata / Nippon Telegraph and Telephone Corporation

Yurie Enomoto / Fujitsu Limited

19.Jun.2015, PGCon in Ottawa

Copyright © PostgreSQL Enterprise Consortium, All Rights Reserved.

Abstract

 PostgreSQL Enterprise Consortium (PGECons for short) is
an organization that consists of major IT companies in
Japan, aiming to promote PostgreSQL to enterprise users
in the country.

 Since 2012 when PGECons was established, we have been
doing surveys of PostgreSQL's functions and performance
to PGECons members to estimate how PostgreSQL well
meets their requirements.

 In this talk, we will focus on some of major requests from
the surveys, including enhancement of table partitioning
and error messages handling.

 From the enterprise users' point of view, we would like to
share these obstacles behind the requests that might limit
PostgreSQL's acceptance, in order to cope with these
issues with the community.

2

Copyright © PostgreSQL Enterprise Consortium, All Rights Reserved.

Who are we?

 Tetsuo Sakata

 Works for NTT Open Source.

 Yurie Enomoto

 Works for Fujitsu ltd.

 PostgreSQL Enterprise Consortium

 An organization that consists of IT Companies in Japan

including Fujitsu, NTT, NEC, SRA OSS and so on.

 16 companies for its regular member

 Detailed information;

 https://www.pgecons.org/en/about/

 Talk in PGCon 2013

“Introducing PostgreSQL Enterprise Consortium activities”

3

Copyright © PostgreSQL Enterprise Consortium, All Rights Reserved.

Speed-up for PostgreSQL Enterprise Adoption

Trend of the OSS adoption

for enterprise in Japan

Experiences and achievements

by more than 5,000 companies

Public Sector

■ Prompt using “Open Standard”

for the government and

municipal system

Energy Supplier

■ Prompt adoption of OSS

including PostgreSQL

for cost reduction

Transportation

■ Improve the standard

guidelines for PostgreSQL

■ Use both OSS and

commercial product

according to the requirement

Financial and

insurance industry

Energy supplier

Distribution, retail,

Transport industry

Medical and

human services

Education service

and school

National and

local government

 Mission

Critical

Systems
Manufacturing

 industry

Agriculture,

forestry,

fisheries

industry

4

Copyright © PostgreSQL Enterprise Consortium, All Rights Reserved.

PGECons activities for mission critical area

 We surveyed functionality and performance

required for mission critical area, and found the

following items should be improved.

 partitioning facility:

The performance of queries on partitioned table is not

satisfactory when the number of partition is large

enough like several hundreds.

 Facilities for trouble shooting：
 Enomoto-san will talk.

 Others

 Will be talked some day.

5

Copyright © PostgreSQL Enterprise Consortium, All Rights Reserved.

Requirement to

partitioning

To accelerate PostgreSQL adoption to Greater Enterpsise

6

Copyright © PostgreSQL Enterprise Consortium, All Rights Reserved.

Case Study for Partitioning usage

 To clarify partitioning issues, studied its usage

 What are typical usage patterns and cases of

partitioning?

 What are required to partitioning features?

 Small survey done by hearing to PGECons

members

 Most systems are intended OLTP applications.

(OLAP should have different requirement though)

 Two typical application patterns found

 Logging time-series data

 Data divided into branches

7

Copyright © PostgreSQL Enterprise Consortium, All Rights Reserved.

Pattern 1: Logging time-series data

 Large DBs that store time-series data like logs

 Inserted data continuously

 Aggregate (e.g sum up) them periodically

 Discard bunch of data periodically

 Cases

 Telecommunication

 NTT OSS estimated 1/3 of DBs in the company operated in this
way

 Resale and Financial

 PGECons members found this kind of operation in resale and
financial applications

 Others

 An email archiver accelerate searching messages in repository

8

Copyright © PostgreSQL Enterprise Consortium, All Rights Reserved.

Logging time-series data with partitioning

 Logged data arrive continuously and are distributed to a

partition according to their timestamps.

 Aggregating data in a specified period, we only have to

look them up particular partitions not whole the table.

 Discarding data, we only have to truncate partitions.

 We can do it in a short time without vacuuming after.

9

log data parent
table

child table
（30.Jun）

child table
（29.Jun）

child table
（28.Jun）

child table
（1.Jan）

・・・

eliminate

Data logging

test

Summing up data in a day,

week or month.

Copyright © PostgreSQL Enterprise Consortium, All Rights Reserved.

Pattern 2: Data divided into branches

 Databases in financial applications store data in

partitions. Each partition stores data related to a

branch of a bank.

 The number of partitions is about 1000, it

depends on number of branches a bank has.

 Data related to branches can be handed independently.

 Several queries aggregated branches’ data.

10

Copyright © PostgreSQL Enterprise Consortium, All Rights Reserved.

Common situations partitioning used

 Database Size

 Databases larger than 1TB require partition facility.

 Typical application

 Logging time-series data and their aggregation

 Data processing is limited to a subset of database (e.g.

divided in to branches)

 Queries

 Most queries search only one partition to look up data

or aggregate them.

 Several queries aggregate data from more than one

partitions or join tuples between partitions.

11

Copyright © PostgreSQL Enterprise Consortium, All Rights Reserved.

Main requirement for partitioning

 Number of partitions: 1000 partitions are

sufficient to most applications.

 cf. 1 partition per day for 3 years.

 Speedier query execution and easier definition required

 Partition rules: “range” and “list” are used most.

 Some require multi-column partitioning.

 “hash” is seldom used.

 Size of a partition: matches to some dozens of

millions tuples.

 From 10GB to 100GB for a partition.

12

Copyright © PostgreSQL Enterprise Consortium, All Rights Reserved.

Performance evaluation on

partitioning

To accelerate PostgreSQL adoption to Greater Enterprise

13

Copyright © PostgreSQL Enterprise Consortium, All Rights Reserved.

Performance of partitioning

 PGECons evaluated performance of partitioning

using ‘logging time-series data’ pattern to clarify

performance issues.

 Various number of partitions were tested to know the

slow-down caused by partitioning.

 Numbers of partitions are 30, 90, 180.

 Various methods to distribute data to partitions are

tested to know the overhead of data distribution and

the development efforts.

 the methods are static function, dynamic function and pre-

compiled function in C.

14

Copyright © PostgreSQL Enterprise Consortium, All Rights Reserved.

Evaluation Model

 Operation Pattern: ‘logging time-series data’
 Log data from a group of products arrive and are stored into table

continuously.

 A partition is prepared for the data arrived in a day.

 data are stored for 1, 3, or 6 months (30, 90 or 180 partitions are
used respectively)

 Evaluation Scenarios
 ‘Data logging’ (data insertions to partitions)

 3 methods for data distribution are used. They are implemented as trigger
functions for performance comparison.

 ‘Data Aggregation’
 queries placed to aggregate log records arrived in a month (30 days).

15

log data parent
table

child table
（30.Jun）

child table
（29.Jun）

child table
（28.Jun）

child table
（1.Jan）

・・・

eliminate

Data logging

test

stores data

for a day

Copyright © PostgreSQL Enterprise Consortium, All Rights Reserved.

Data logging test

 Amount of inserted data
 3 cases are tested; data insertion for 30, 90 and 180 days.

 Data distribution methods;
 Three methods are used to distribute data to an appropriate partition.

 And measured insertion time for the same data into a single partition directly
for comparison.

16 16

Parent

Table

trigger

function

（30.Jun） （29.Jun） （28.Jun） (1. Jan)

data

inserted

1. Static distribute function selects a partition by a bunch of hard-coded

if-then rules for each partition if it is suitable to store the data.

2. Dynamic distribute function creates an insert statement for the

suitable partition based on the partition key included in the inserted

data.

3. Function with plan cache creates an insert statement like as dynamic

distribute function and re-use the exec. plan of the insert statement.

This is implemented in C to use internal plan cache.

Children tables

(partitions)

Copyright © PostgreSQL Enterprise Consortium, All Rights Reserved.

Result of data logging test
 Elapsed time for data insertion

Static >> Dynamic > Cache > Direct
 Static function insertion was prohibitively slow. (we gave up testing a

case for 180 partition because of limited time)

 Dynamic function performs better than static one and it is easily
implemented.

 Function with plan cache outperformed the others, but it
required more effort to implement, and a bug would result in DB
server’s fault.

17

static dynamic cache direct

30 2:15:00 0:39:50 0:28:33 0:17:44

90 27:45:16 2:12:25 1:21:50 0:51:34

180 4:42:00 2:26:28 1:42:40

0:00:00

6:00:00

12:00:00

18:00:00

0:00:00

6:00:00

12:00:00

E
L

A
P

P
S

E
D

 T
IM

E

data insertion time

24 hours

Copyright © PostgreSQL Enterprise Consortium, All Rights Reserved.

Result of data logging test (cont‘d)

 Comparing 2 methods except static function with
regard to insertion time to fulfill a partition.
 These methods insert tuples into partitions in almost

constant rate while the number of partitions changes.

 Time for dynamic function grows slowly as number of
partitions increase.

18

30 90 180

dynamic 0:01:20 0:01:28 0:01:34

cache 0:00:57 0:00:55 0:00:49

direct 0:00:35 0:00:34 0:00:34

0:00:00

0:00:30

0:01:00

0:01:30

0:02:00

E
L

A
P

S
E

D
 T

IM
E

 [
H

:M
M

:S
S

]

Insertion time for a partition

 This analysis shows;
 These two methods

can be used for a large
number of partitions.

 A slight time growth of
dynamic distribution
would be a latent
problem for a large
number of partitions

Copyright © PostgreSQL Enterprise Consortium, All Rights Reserved.

Test for Aggregation

 Query for aggregation
 scans log records arrived in a specified month and aggregate them by

product_id and err_code.

 From logged data in 30, 90, 180 days cases, logs arrived in 30 days are
aggregated in all cases.

 Tested schema in detail
 Access log record has product_id, date, time, access_time, err_code etc.

 product_master is referred by access_log via product_id.

19

log data
parent
table

child table
（1.Jan）

child table
（2.Jan）

child table
（3.Jan）

child table
（30.Jun）

・・・

product master access log
1 n

This table stores log data and is divided into 30,

90 or 180 partitions.

Copyright © PostgreSQL Enterprise Consortium, All Rights Reserved.

Result of data aggregation

 Queries against 30, 90, 180 partitions that
aggregates same amount data.

 case that single table stores all data is tested for comparison
(rightmost bars)

 tested three scan methods

 index, bitmap, sequential

20

30 90 180 single table

index_scan 2.340 2.373 2.543 10.003

bitmap_scan 0.544 0.573 0.560 2.138

seq_scan 0.088 0.121 0.118 0.772

0.000

2.000

4.000

6.000

8.000

10.000

12.000

E
L

A
P

S
E

D
 T

IM
E

 [
H

O
U

R
]

Elapsed time for summing up data

Copyright © PostgreSQL Enterprise Consortium, All Rights Reserved.

Result of data aggregation (cont’d)

 Aggregation time growth against num of partitions

 Relative elapsed times with 30 partitions elapsed time

being unity.

 seq_scan slows down obviously

 Latent problem for large number of partitions used

21

30 90 180

index_scan 1.000 1.014 1.087

bitmap_scan 1.000 1.055 1.031

seq_scan 1.000 1.375 1.347

0.800

0.900

1.000

1.100

1.200

1.300

1.400

re
la

ti
v
e

 d
u

ra
ti

o
n

(3

0
 p

a
rt

it
io

n
 c

a
s

e
 i
s

 u
n

it
)

Relative duration for aggregation query

Copyright © PostgreSQL Enterprise Consortium, All Rights Reserved.

Summary of the evaluation

 Performance evaluation simulates ‘Logging time-

series data’ application, which is widely used in

enterprise.

 Data insertion can speed up by distribution function

with dynamic insert statement creation or using plan

cache.

 With these functions, we estimated about 200 partitions can

be used for production system.

 From usability, features for partitioning are not

enough to implement application program efficiently.

 Static data distribution is prohibitively inefficient.

 Other efficient data distribution methods require more effort

to make than static distribution one.

22

Copyright © PostgreSQL Enterprise Consortium, All Rights Reserved.

Summary of the evaluation

 Tested aggregation for 180 partitions

 Aggregate data from the table that has 180 partitions

can be done quickly.

 Brief analysis suggested, queries against larger

number of partitions will take much longer time.

 According to hearing, queries against the table that has

much more partitions (e.g. 500) can not be executed as

quickly as this case.

 This shows we need improve planning and execution

such as constraint exclusion.

23

Copyright © PostgreSQL Enterprise Consortium, All Rights Reserved.

Awaiting Solutions

 Partition Definition – Explicit Syntax

 easier definition of partitioning is desirable. e.g.

dedicated statement for partition definition.

 Boundary checks should be automatically.

 range and list partitioning used popularly, they should be

defined easily.

 Shorter notation for a large number of partitions

required.

 Ideally 1000 partitions defined in a few lines, e.g. …

 range partition on time-series domain can define partitions for

days, months etc. by simple syntax.

 list partition on a given table of PostgreSQL can define

partitions for each row of the table.

24

Copyright © PostgreSQL Enterprise Consortium, All Rights Reserved.

Awaiting Solutions

 Effective query execution

 Increase number of partitions up to 1000, it requires
more efficient query processing as follows.

 Data distribution

 By now a user defines triggers to distribute data to
partitions, the distribution function should be built-in
and accelerated

 Desirable speeding up by binary search and/or indexing

 Query processing

 query for a table has large number of partitions should
be executed more effectively.

 Similar to data distribution, looking up a partition for given
value should be accelerated; this should be done easier if we
have built-in data structure.

25

Copyright © PostgreSQL Enterprise Consortium, All Rights Reserved.

- Improving error code -

Speed-up for

PostgreSQL Enterprise Adoption

26

Copyright © PostgreSQL Enterprise Consortium, All Rights Reserved.

What needs for Mission Critical System?

Non Stop

Speedy

Stable

Operation

■ Don’t stop the social infrastructure system.

■ Big damage on the social life in the world

24x7
Support

Needs for the construction, operation and
support 24 hours a day, every day

■ In the case of financial,
half a day stop become the news.

■ If the system failure occurs, support people rush to
the site within two hours after failure acceptance.

■ Stable operation is essential even if the busy period

on the season event comes.

27

Copyright © PostgreSQL Enterprise Consortium, All Rights Reserved.

PostgreSQL in Enterprise

Clustering

Operation
Monitoring

Administration
& Management

Reporting

Backup

Log Management

Security

■ Non Stop : Availability not to stop the system

■ Speedy : Responsive identification for cause and solution

■ Stable Operation :Always monitor the performance and status
of the database, and prevent trouble

It is essential to collaborate with PostgreSQL and software tools.

Mirroring &
Fail over

Replication

Performance
Monitoring

Non Stop

Speedy

Stable Operation

28

Copyright © PostgreSQL Enterprise Consortium, All Rights Reserved.

What information is it important to catch?

 Significance of PostgreSQL Log

PostgreSQL Log

Security
Audit

Performance
Alive

Monitoring

Key
Point

Service alive monitoring, Health check Non Stop

Speedy

Stable
Operation

Quick trouble shooting using error log

Performance monitoring(Slow Query)
Security Audit

Today’s
Talk Topic

29

Copyright © PostgreSQL Enterprise Consortium, All Rights Reserved.

0

5

10

15

20

25

30

35

40

45

Question. What do you think the difficulty to adopt a more
mission-critical area? (multiple answers allowed)

Much-requirement in Japan

[Reference]
PostgreSQL Enterprise Consortium
Seminar Questionnaire （14/05/2015）

Responsive Support is the much-requirement

30

Copyright © PostgreSQL Enterprise Consortium, All Rights Reserved.

How to Troubleshooting?

 If system failure occurs, responsive response is needed.

 Cause Identification

 Action Decision

In the case of using non-PostgreSQL
including commercial database

0

10

20

30

40

50

60

Question. How do you solve when the error occurs

in your system? (multiple answers allowed)

- Manual and Message collection book
- Web search by the error message text or
error message ID

31

Copyright © PostgreSQL Enterprise Consortium, All Rights Reserved.

 High tendency of investigation by the error message text

 Web research

 Know-how is

here and there.

 GrepCode

 It takes time to

identify the cause.

 Expert skill and know-how

are needed.

PostgreSQL How to Troubleshooting?

In the case of using PostgreSQL

0

10

20

30

40

50

60

Question. How do you solve when the error occurs in

your system? (multiple answers allowed)

32

Copyright © PostgreSQL Enterprise Consortium, All Rights Reserved.

[Using the error code]

■ Multi error messages are assigned to one error code.

- Example -
Error Code : 40P01(deadlock_detected)
Pattern1 "deadlock detected“
 detail : See server log for query details.
Pattern2 "canceling statement due to conflict with recovery“
 detail : User transaction caused buffer deadlock with recovery.

■ There are 120 error messages not assigned each error code.

Troubleshooting by GrepCode –Case1-

33

Copyright © PostgreSQL Enterprise Consortium, All Rights Reserved.

[Using the error message text]

■ There are 981 message patterns that are output same error

message in multiple source code.

(Max number of duplicated source code : 54)

■ When it is included variable number in the message, it is

needed to narrow the search by a fuzzy condition and confirm

the multiple source code.

Troubleshooting by GrepCode –Case 2-

34

Copyright © PostgreSQL Enterprise Consortium, All Rights Reserved.

Difficulty of PostgreSQL Log

 All log messages are output to one log file.

It is not be able to the log routing by error level or category.

 Error Trouble

 Slow Query Log

 The abnormal detection in the error message text

 It is not able to specify the detail conditions and monitor by

the pattern matching of a regular expression,

 We can catch the serious error level of the log

(PANIC, FATAL, ERROR)

 It is difficult to catch the significant slow query log.

Log-scrambling

35

Copyright © PostgreSQL Enterprise Consortium, All Rights Reserved.

① Grant of message ID

 The error generation part is understood at the component level of

the source.

 Improvement of detection task in operation monitor by the pattern

matching

② Uniqueness how to grant of message ID

 One cause, one message ID

 Details of SQLSTATE

③ Accumulation of know-how

 Message ID, Description, System Processing, User’s Action

 Aggregation of troubleshooting know-how sharing by message

collection book, website

Ideal Operation of Log Message

36

Copyright © PostgreSQL Enterprise Consortium, All Rights Reserved.

Classification Example of Conditions

based on User’s Action

Fujitsu PostgreSQL(SQLSTATE)

Warning Class01 (Ex. 01000: warning)

Cancel 57014: query_canceled

Connection Error (protocol violation) 08P01: protocol_violation

Internal Error XX000: internal_error

Client Configuration Error F0000: config_file_error

Misunderstanding how to use
(Application, command usage)

0A000: feature_not_supported
Class42 (Ex. 42804: datatype_mismatch)

Temporary not available 55P03: lock_not_available
40001: serialization_failure

Need Recovery (config file error) F0000: config_file_error

Need Recovery (Data, Log, Temporary file
Error)

XX001: data_corrupted
XX002: index_corrupted

Need Recovery (Execute Module Error) 55000: object_not_in_prerequisite_state

37

Copyright © PostgreSQL Enterprise Consortium, All Rights Reserved.

Fujitsu PostgreSQL(SQLSTATE)

Out of resource (Disk) 53100: disk_full

Out of resource (Connection) 53300: too_many_connections

Out of resource (Memory) 53200: out_of_memory

Out of resource (Shared Memory) 53200: out_of_memory

Out of resource (Depth of execution stack) 54001: statement_too_complex

Out of resource (number of file descriptor) 53000: insufficient_resources

[Original additional items]

 Out of resource : Thread, Process, Message Queue, Table lock, File open

 Time out

 Disconnection

 Replication Error

Classification Example of Conditions

based on User’s Action

38

Copyright © PostgreSQL Enterprise Consortium, All Rights Reserved.

How PostgreSQL Message Catalog works?

[What difficulties?]

 It is needed to review because there are messages granted wrong error codes.

 Messages that are mismatch between SQLSTATE and kind of error

 It is needed to create message catalog separately.

 The messages that are not created catalog are unsupported multiple languages

(supported only English).

 Message Catalog Structure
 Server, JDBC : “PO” File

 .NET : “.resx” File

 Output message mechanism is
different between Server and each
kind of client driver.
 ereport, elog, (“printf” for stderr)

 JDBC doesn’t have error class

300
messages

1,712 messages

Grant ID
after translation

Message
Catalog

Source File

1. Create message catalog
with xgettext command 2. Replace message

through gettext()

Tablespace¥ “%s¥” does not exist

39

Copyright © PostgreSQL Enterprise Consortium, All Rights Reserved.

How to manage Message ID when PostgreSQL is

upgraded?

[Role of tool]

① Extract message differences and calculate mechanically concordance rate

based on the vocabulary

② Sort same ID or new ID according to the concordance rate

[What Difficulties]

 The incompatibility of message is frequently occurred. (Upgrade from 9.1 to

9.2, there are about 400 incompatibilities about the message of backend)

 There are same messages even though error is different.

Community Fujitsu
PostgreSQL

Message
Catalog(no ID)

PostgreSQL

Message
Catalog(ID)

Tool

Message
Catalog(no ID)

Message
Catalog(ID)

VL up VL up

Because it is matched according to character-string comparison, the result
is hardly influenced when message output is changed in source code.

40

Copyright © PostgreSQL Enterprise Consortium, All Rights Reserved.

Conclusions

■ PostgreSQL log is important role for the stable operation in
mission critical system.
◻ Operation monitoring, Performance monitoring, Cause Identification

■ Effective systematization improvement of log messages in
order to strengthen cooperation with peripheral software tools

[Results]

■ Categorize PostgreSQL log into the error log and slow query
log by message ID (Normally, detection of error log type by
string matching)

■ Speed-up to identify the cause of error by message ID and ID
collection book

■ Improve user self-solution for the consolidation know-how by
sharing the response collection book

41

Copyright © PostgreSQL Enterprise Consortium, All Rights Reserved.

Further PostgreSQL Evolution

Enhance collaboration with
linked software & tool

Increase
PostgreSQL User

Expand adoption to
Mission Critical System

42

Copyright © PostgreSQL Enterprise Consortium, All Rights Reserved.

Thank you

43

